SET IDENTITIES
Sets; A,B,C
Universal set; I
Compliment; A’
Proper set; A⊂B
Empty set; Φ
Union of set; A∪B
Intersection of sets; A∩B
Difference of sets; A/B
- A⊂I
- A⊂A
- A=A if A⊂B and B⊂A
- Empty set Φ⊂A
- Union of sets; C=A∪B={x|x ∈ A or x ∈ B}

- Commutativity; A∪B=B∪A
- Associativity; A∪(B∪C) = (A∪B)∪C
- Intersection of sets; C = A∪B={x|x ∈ A and x∈B}

- Commutativity ; A∩B =B∩A
- Associativity ; A∩(B∩C)=(A∩B)∩C
- Distributivity; A∪(B∩C)=(A∪B)∩(A∪C); A∩(B∪C)=(A∩B)∪(A∩C)
- Idempotency; A∪A=A; A∩A=A
- Domination ; A∩Φ=Φ ; A∪I=I
- Identity; A∪Φ=A; A∩I=I
- Complement; A’={x∈I|x∉I}
- Complement of intersection and union; A∪A’=I; A∩A’=Φ
- De Morgan’s Laws; (A∪B)’=A’∩B’; (A∩B)’=A’∪B’
- Difference of sets; C=B/A-{x|x∈B and x∉A}

- B/A=B/(A∩B)
- B/A=B∩A’
- A/A=Φ
- A/B=A if A∩B=Φ

- (A/B)∩C= (A∩C)/(B∩C)
- A’=I/A
- Cartesian Product C=A x B ={(x,y)|x∈A and Y∈B}
SETS OF NUMBERS
Natural numbers; N
Whole numbers; Nο
Integers; Z
Positive integers; Z+
Negative integers; Z-
Rational numbers; Q
Real numbers; R
Complex numbers; C
- Natural numbers,N = {1,2,3,4,……∞} (counting numbers)
- Whole numbers, Nο= {0,1,2,3,4,……∞} (counting numbers and zero)
- Integers; (whole numbers and their opposites and zero)
- Z+= N= {1,2,3,….}
- Z-= {…..,-3,-2,-1}
- Z = Z- ∪{0}∪Z+ = {…..,-3,-2,-1,0,1,2,3,4,….}
- Rational numbers; Q={x|x=a/b and a∈z and b∈z and b is not equal to zero} (repeating or terminating decimals)
- Irrational numbers; Non repeating and non terminating decimals
- Real numbers; union of rational and irrational numbers: R
- Complex numbers; {x+iy|x∈R and y∈R} where i is the imaginary unit
- N⊂Z⊂Q⊂R⊂C
